Name: Class:

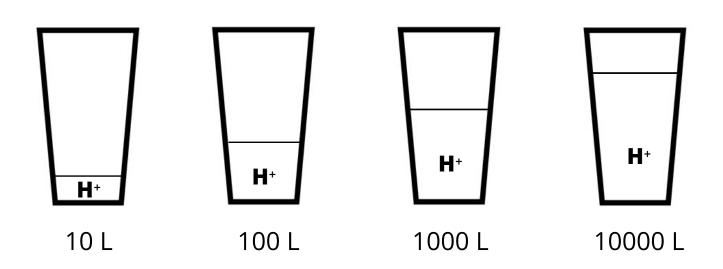
Date:

Introduction to acids

Acids are chemical compounds that release hydrogen ions (H+) when placed in water.

pH is a measure of how acidic a solution is.

very acidic

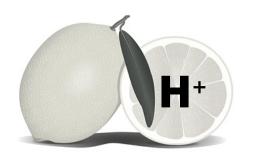

neutral

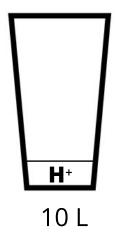
very alkaline

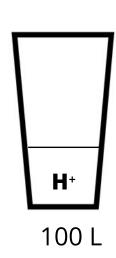
Construct the pH scale

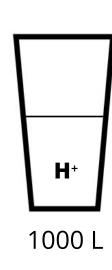
Explore the relationship between pH and hydrogen ion concentration

- 1 mole of (H+) ions
- Dilute to 10 L, 100 L, 1000 L and 10000 L




What is the concentration of (H+) ions in each solution?


Concentration


The concentration (M) of a solution is defined as the number of **moles of solute** divided by the **volume of solution**.

$$M = \frac{moles \ of \ H^+}{liters \ of \ solution}$$

$$\frac{1 \, mol}{10 \, L} = 0.1 \, M$$

$$\frac{1 \, mol}{1000 \, L} = 0.001 \, M$$

$$\frac{1 \, mol}{100 \, L} = 0.01 \, M$$

$$\frac{1 \, mol}{10000 \, L} = 0.0001 \, M$$

On a simple level, the pH scale can be viewed as a ranking of the number of hydrogen ions in a solution.

pH can be expressed using the concentration of hydrogen ions, M

0.1 M

0.01 M

0.001 M

0.0001 M

M can be written in scientific notation

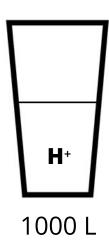
 $1 \times 10^{-1} M$

1 x 10⁻² M

1 x 10⁻³ M 1 x 10⁻⁴ M

However, it would be easier to use the power instead

1

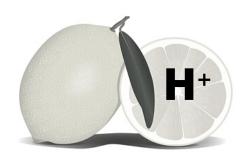

2

3

4

Use the power

pH can be conveniently expressed as the **positive exponent** of the **H**⁺ ion concentration.



Concentration (M)	Scientific notation (M)	рН
1	1	0
0.1	1 x 10 ⁻¹	1
0.001	1 x 10-2	2
0.0001	1 x 10 ⁻³	3
0.00001	1 x 10 ⁻⁴	4

You can see that the more acidic a solution is, the lower the pH.

• A more acidic solution has a higher concentration of H⁺ ions.

pH can be viewed as the power of hydrogen concentrations

••• CONCEPT CHECK

Complete the table below. Show how the pH scale represents the concentration of H⁺ ions in a solution. Fill in all the columns.

Concentration (M)	Scientific notation (M)	рН
1	1	0
0.1	1 x 10 ⁻¹	1
0.001	1 x 10 ⁻²	2
0.0001	1 x 10 ⁻³	3
0.00001	1 x 10 ⁻⁴	4

Construct the pH scale

••• CONCEPT CHECK

Write the pH scale below from 0 to 14 above the lines.

very acidic neutral very alkaline

Finding the pH of solutions

If we know the (H+) ion concentrations present in a solution, we can easily calculate the pH of the solution.

Calculate the pH

It's easy if the number system has a base 10. You can express the pH as the positive exponent of the concentration.

1 x 10 ⁻¹ M	1 x 10 ⁻² M	1 x 10 ⁻³ M	1 x 10 ⁻⁴ M
pH = 1	pH = 2	pH = 3	pH = 4

But what if the number system does not have a base 10?

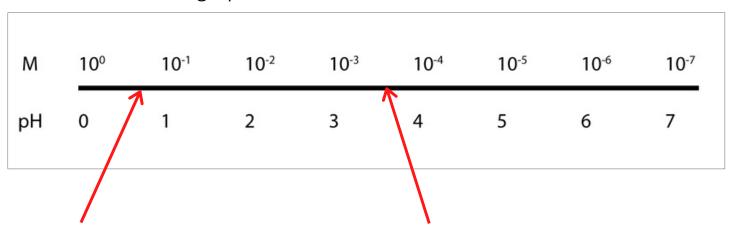

 $3.4 \times 10^{-1} \,\mathrm{M}$ $7.6 \times 10^{-3} \,\mathrm{M}$ $5.5 \times 10^{-4} \,\mathrm{M}$

pH = ? pH = ? pH = ?

Estimate the pH

There are two ways to determine the pH of solutions

- Estimate the pH
- Use a calculator



How to calculate the pH of a solution with the following concentrations of H⁺ ions?

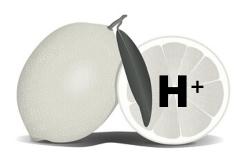
3.4 x 10⁻¹ M

5.5 x 10⁻⁴ M

We can estimate using a pH chart as shown below.

3.4 x 10⁻¹ M

- conc higher than 1×10^{-1} M
- conc less than 1 x 10^o M


The pH is between <u>0 and 1</u>

5.5 x 10⁻⁴ M

- conc higher than 1×10^{-4} M
- conc less than 1×10^{-3} M

The pH is between 3 and 4

Estimate the pH

••• CONCEPT CHECK

Estimate the pH of the following solutions, given the concentrations of the H⁺ ions in solutions.

2.4 x 10⁻⁷ M

6.5 x 10⁻⁹ M

Use the pH scale chart as shown below.

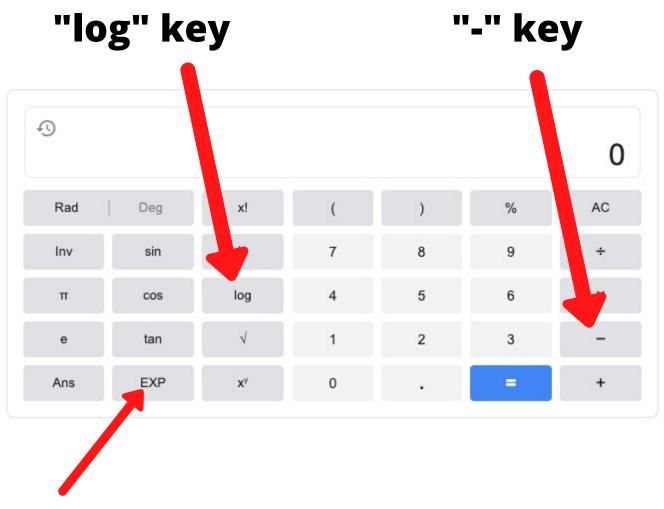
М	10°	10-1	10-2	10-3	10-4	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷
рН	0	1	2	3	4	5	6	7

 $2.4 \times 10^{-7} M$

- conc higher than _____ M
- conc less than _____ M

The pH is between _____

 $6.5 \times 10^{-9} M$


- conc higher than _____ M
- conc less than _____ M

The pH is between _____

Calculate the pH

USING CALCULATORS

The three most important keys

"exp" key

In some calculators, you have to use the "ee" button instead

Calculate the pH

USING CALCULATORS

Calculate the pH of a solution given the (H+) concentration

3.4 x 10⁻¹ M

Calculator keystrokes

Use the EXP KEY for expressing (10⁻¹)

$$pH = -\log(3.4 EXP - 1)$$

pH is the negative log of the concentation of (H+) ions.

Calculate the pH

••• CONCEPT CHECK

Calculate the pH of the following solutions, given the concentrations of the H $^+$ ions. Note: The scientific notation (1.1 x 10 $^{-1}$) can be written as (1.1 EXP -1) to reflect the calculator function.

Concentration of H+ (M)	Formula	рН
1.1 x 10 ⁻¹	-log(1.1 EXP -1)	0.96
3.2 x 10 ⁻⁷		
2.2 x 10 ⁻³		
7.9 x 10 ⁻¹⁰		
8.9 x 10 ⁻²		
6.4 x 10 ⁻³		
2.9 x 10 ⁻⁴		
1.6 x 10 ⁻⁶		
4.0 x 10 ⁻¹⁴		
9.1 x 10 ⁻⁹		