What is the percentage yield of water if $\mathbf{1 3 8 g}$ water is produced from $\mathbf{1 6 g}$ of hydrogen and excess oxygen.

1: Write the equation

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$

2: Balance the equation

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

3: Calculate actual yield

The actual yield is given -138 g

4: Calculate theoretical yield

The theoretical yield must be calculated using stoichiometry (see section below) Theoretical yield -142.56 g

5: Calculate percent yield

$$
\begin{aligned}
& \quad \text { Percent Yield }=(\text { Actual Yield } \div \text { Theoretical Yield }) \times 100 \% \\
& =(138 \div 144) \times 100 \% \\
& =95.83 \%
\end{aligned}
$$

Answer: Percentage yield water with excess oxygen $=95.83 \%$

CALCULATE THE THEORETICAL YIELD OF WATER

	2H	O_{2}	$2 \mathrm{H}_{2} \mathrm{O}$
molar mass (g/mol)	$2(1)=2$	$2(16)=32$	
mass given (g)	16	Not given	
no. moles calculated by mass / molar mass	16/2 = 8 moles		
ratio of moles (hydrogen:oxygen:water)	2	1	2

The ratio tells you that 2 moles of hydrogen yields 2 moles of water

The ratio is $1: 1$

Therefore, 8 moles of hydrogen will yield 8 moles of water

Mass of water $=$ moles \times molar mass

Molar mass of water $\quad$$\mathrm{H}_{2} \mathrm{O}$ $=2(1)+16=18 \mathrm{amu}$ $=18 \mathrm{~g} / \mathrm{mol}$	
Mass of water = moles \times molar mass	$=8 \mathrm{~mol} \times 18 \mathrm{~g} / \mathrm{mol}=144 \mathrm{~g}$

